
N
S

W
C

C
D

-C
IS

D
-2

00
9-

00
8

D
U

K
W

-2
1

A
u

to
n

o
m

o
u

s
N

av
ig

at
io

n

Naval Surface Warfare Center
Carderock Division
West Bethesda, MD 20817-5700

NSWCCD-CISD–2009/008 August 2009

Ship Systems Integration & Design Department

Technical Report

DUKW-21 Autonomous Navigation
Autonomous Path Planning for an Amphibious Vehicle

By

Benjamin Flom

Approved for Public Release: Distribution Unlimited

 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this
burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302.
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid
OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

1. REPORT DATE (DD-MM-YYYY)
7-Aug-2009

2. REPORT TYPE
Final

3. DATES COVERED (From - To)
18-May-2009 – 07-August-2009

5a. CONTRACT NUMBER

5b. GRANT NUMBER

4. TITLE AND SUBTITLE
DUKW-21 Autonomous Navigation - Autonomous Path Planning for an Amphibious
Vehicle

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

6. AUTHOR(S)
Benjamin Flom

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION
NAME(S) AND ADDRESS(ES)

Naval Surface Warfare Center
Carderock Division
9500 MacArthur Boulevard
West Bethesda, MD 20817-5700

8. PERFORMING ORGANIZATION REPORT
 NUMBER

NSWCCD-CISD-2009/008

10. SPONSOR/MONITOR’S ACRONYM(S)

9. SPONSORING / MONITORING
AGENCY NAME(S) AND ADDRESS(ES)

Chief of Naval Research
One Liberty Center
875 North Randolph Street,
Suite 1425
Arlington, VA 22203-1995

11. SPONSOR/MONITOR’S REPORT
 NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for Public Release: Distribution Unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
Amphibious vehicles, which transport cargo from ship to shore, will play a critical role in future Sea Base supply chain operations. During the
summer of 2007, a project team of CISD interns developed a design concept called DUKW-21, a manned amphibious vehicle that had
autonomous compatibility so that in the future, an autonomous control system could be implemented. To start the design of an autonomous
control system for DUKW-21, this 2009 CISD intern project focused on autonomous amphibious path planning. While there have been
developments in unmanned vehicle navigation, they have been focused on operations on land, sea or air with no integration of operational
modes. Unmanned amphibious vehicles face a unique challenge in autonomously transitioning between sea and land, where there has been
little research. Existing research on ground and sea path optimization algorithms has been compiled, which would be a part of the overall
amphibious navigation process. An original, intuitive, algorithm is proposed for transitioning, which makes up the final piece of the amphibious
path planning algorithm. Several functional requirements are defined for DUKW-21 that are needed for implementation of the proposed
algorithms.

15. SUBJECT TERMS
DUKW-21, DUKW-ling, path-planning, autonomous amphibious navigation, CISD

16. SECURITY CLASSIFICATION OF: 19a. NAME OF RESPONSIBLE PERSON
Colen Kennell

a. REPORT
UNCLASSIFIED

b. ABSTRACT
UNCLASSIFIED

c. THIS PAGE
UNCLASSIFIED

17. LIMITATION
OF ABSTRACT

UL

18. NUMBER
OF PAGES

27

19b. TELEPHONE NUMBER (include area
code)
301-227-5468

ii
Standard Form 298 (Rev. 8-98)

Prescribed by ANSI Std. Z39.18

Naval Surface Warfare Center Carderock Division
Naval Research Enterprise Intern Program

DUKW-21 Autonomous Navigation

Abstract

Amphibious vehicles, which transport cargo from ship to shore, will play a critical role in
future Sea Base supply chain operations. During the summer of 2007, a project team of
CISD interns developed a design concept called DUKW-21, a manned amphibious
vehicle that had autonomous compatibility so that in the future, an autonomous control
system could be implemented.

To start the design of an autonomous control system for DUKW-21, this 2009 CISD
intern project focused on autonomous amphibious path planning. While there have been
developments in unmanned vehicle navigation, they have been focused on operations on
land, sea or air with no integration of operational modes. Unmanned amphibious vehicles
face a unique challenge in autonomously transitioning between sea and land, where there
has been little research.

This report investigates autonomous navigation by compiling ground and sea path
optimization algorithms, a part of the overall amphibious navigation process. It then
proposes an original, intuitive, algorithm for transitioning, which bridges the gap between
sea and land path planning. Several functional requirements are outlined for the DUKW-
21 project that are needed for implementation of the proposed algorithms.

Acknowledgements

This report is the culmination of work conducted by a University of Maryland
undergraduate student hired under the National Research Enterprise Intern Program
sponsored by the Office of Naval Research. The work was performed in the Center for
Innovation in Ship Design (CISD), which is part of the Ship Systems Integration and
Design Department at Naval Surface Warfare Center Carderock Division. Acknowledged
are several individuals that have been of great assistance in the development of this
project:

 Chris Wilson, Steve Ouimette, Jack Offutt, and Dr. Colen Kennell of CISD.

 Special thanks to Prof. Irina Dolinskaya of Northwestern University.

i

Naval Surface Warfare Center Carderock Division
Naval Research Enterprise Intern Program

DUKW-21 Autonomous Navigation

Table of Contents
Abstract .. i
Acknowledgements.. i
Table of Contents.. ii
List of Figures .. iii
Introduction... 1

DUKW-21 Automation... 1
Overview of Autonomous Navigation .. 2

Path Planning Philosophies... 3
Graph Model Concepts ... 4
Terminology.. 4
Finding an Optimal Path ... 5
Approach to Amphibious Navigation ... 8

Sea Surface Navigation... 9
Ground Navigation.. 15

Terminology.. 16
Calculating Path Cost.. 16
Deriving the Path .. 18

Transition .. 19
Sea-Surface to Ground.. 20
Ground to Sea-Surface.. 21

Conclusion .. 23
Functional Requirements for Implementation .. 23

Recommendations for Future Research .. 24
Bibliography ... 25

ii

Naval Surface Warfare Center Carderock Division
Naval Research Enterprise Intern Program

DUKW-21 Autonomous Navigation

iii

List of Figures
Figure 1: CAD Rendering of DUKW-21 Concept ... 1
Figure 2: DUKW-ling Demonstrator .. 1
Figure 3: Autonomous Control Architecture .. 3
Figure 4: Flaw of Continuous Process Implementation on AGV....................................... 4
Figure 5: Case where g(s1) < g(s2) but s2 is a Node on the Optimal Path......................... 6
Figure 6: Case Where Change in Environment Does Not Drastically Affect the Optimal

Path ... 6
Figure 7: ULPAR Definitions Illustration .. 10
Figure 8: Case 1, k = k’... 10
Figure 9: Case 2, k ≠ k’... 10
Figure 10: Example of Case with No Feasible Path ... 10
Figure 11: Illustration of Defined Heading Bounds ... 11
Figure 12: Construction of a Visibility Graph (Dolinskaya & Smith, 2008b).................. 12
Figure 13: Optimal Path for Visibility Graph in Figure 12 when L(s) is Convex

(Dolinskaya & Smith, 2008b) ... 13
Figure 14: Optimal Path from x to y (Dolinskaya & Smith, 2008b) 13
Figure 15: Optimal Path for Visibility Graph in Figure 12 when L(s) is Non-Convex

(Dolinskaya & Smith, 2008b) ... 14
Figure 16: A Grid in which Nodes Reside at the Center of each Cell (Ferguson & Stentz,

2005) ... 15
Figure 17: Comparison of Paths (Ferguson & Stentz, 2005).. 15
Figure 18: A Grid in which Nodes Reside at Cell Corners (Ferguson & Stentz, 2005)... 16
Figure 19: Illustration of Path Cost Function ... 17
Figure 20: Optimal Path from s to sy if < 0 ... 17
Figure 21: Optimal Path from s to sy if  <  ≤ b.. 18
Figure 22: Optimal Path from s to sy if b <  ... 18
Figure 23: Illustration of Difficulty in Identifying Beaching Point.................................. 20
Figure 24: Illustration of Step 1 in Algorithm 11 ... 21
Figure 25: Illustration of Step 1 in Algorithm 12 ... 22

Nomenclature
AGV: Autonomous Ground Vehicle
ASSV: Autonomous Sea-Surface Vehicle
AuAV: Autonomous Amphibious Vehicle
AV: Autonomous Vehicle
CISD: Center for Innovation In Ship Design
LMSR: Large Medium-Speed Roll on/ Role off ship
SWATH: Small Waterplane Area Twin Hull
ULPAR: Unit Linear Path Attainable Region

Naval Surface Warfare Center Carderock Division
Naval Research Enterprise Intern Program

DUKW-21 Autonomous Navigation

Introduction
The United States military currently relies heavily on large transport vessels, such as
Large Medium-Speed RoRo (LMSR) ships, and developed deep water port facilities to
deliver logistic materiel abroad. The difficulties in finding and securing port facilities in
hostile areas spurred the development of the Sea Base concept; the provision of mobile
port facilities in controlled waters. The key challenge to the concept is the development
of a supply chain to transport cargo from the Sea Base to shore. One approach is to use a
medium size container ship to transport cargo from the Sea Base to a location close to
shore, at which point amphibious vehicles can run continuous delivery missions.

During the summer of 2007, a project team of CISD interns developed a design concept
called DUKW-21, an amphibious vehicle that would enhance sea to shore logistics
(Gonzalez et al., see Error! Reference source not found.). The design’s simplicity
allows it to drive over, pick up, and carry a 20ft ISO container between its SWATH-like
hulls from a cargo ship five nautical miles offshore to a point five nautical miles inland.

As a continuation of the concept design, a number of prototype models have been
produced, the latest of which is a 1:7 scale remote-control model called DUKW-ling
(Critchell, see Error! Reference source not found.). Its purpose is to demonstrate the
navigational capabilities of the original DUKW-21 concept, primarily its ability to
operate both in and out of water, and transition between water and land.

Figure 1: CAD Rendering of DUKW-21 Concept

Figure 2: DUKW-ling Demonstrator

DUKW-21 Automation

One of the initial requirements of the DUKW-21 concept was to be “controlled by either
a single crew member or by automatic, unmanned control,” allowing a fleet of DUKWs
to continuously facilitate the ship-to-shore logistics train with limited human interaction.
Replacing the human driver with an intelligent computer would remove the risk of

1

Naval Surface Warfare Center Carderock Division
Naval Research Enterprise Intern Program

DUKW-21 Autonomous Navigation

casualty, and it would allow the vehicle to make decisions in real-time, even if
communication was temporarily interrupted.

The purpose of this project is to investigate possible autonomous control philosophies
and propose an autonomous navigation algorithm that could be used to travel from a
point offshore to a point inland and back. A number of assumptions have been made
regarding the type of information DUKW-21 will need in order to execute its mission,
and they are outlined in the conclusion of this report.

Overview of Autonomous Navigation
Autonomy is the capacity of a system to make informed, un-coerced decisions about its
actions without the involvement of another system or operator. In recent years it has been
adopted by the fields of robotics and manufacturing to describe systems or products
which perform complex, potentially hazardous, repetitive or mundane activities with only
minor human supervision or instruction.

Autonomous vehicles (AV), be they (sea) surface, ground or air based, generally consist
of the same four core components, as illustrated in Figure 33:

 A perception interface, which consists of sensors that acquire information about
the system’s environment, as well as software that converts low-level input
signals from the sensors into high-level information.

 A planner, which, based on the information acquired by the perception interface,
as well as knowledge about the system’s present state, produces the best high-
level plan for the system to complete its mission.

 An executive, which upon reading a new plan, calculates what the actuators need
to do for the system to run the plan, and outputs high-level commands to the
actuator interface.

 An actuator interface, which consists of moveable components, as well as
software that converts high-level commands into low-level signals that control the
motion of the actuators.

2

Naval Surface Warfare Center Carderock Division
Naval Research Enterprise Intern Program

DUKW-21 Autonomous Navigation

Figure 3: Autonomous Control Architecture

An AV planner would derive plans that include vehicle navigation, as well as other
movements (such as picking up and transferring an ISO container, in the case of DUKW-
21). The process of producing a navigation plan is called path planning. The scope of this
project is limited to path planning for an Autonomous Amphibious Vehicle (AuAV).

Path Planning Philosophies

Amphibious vessels are unique in that they operate in three distinct zones; on the surface
of water, on land and (at various stages) in both at the same time. Current developments
in vehicle autonomy have focused on operations on land, sea or air with no combinations.
Although an amphibious vessel could take advantage of these ideas, discreet philosophies
have been developed in each area to take advantage of their individually unique
problems.

Autonomous Ground Vehicles (AGV) typically implement a batch path planning
system, which finds a complete path from the present location to the goal waypoint (Pell
et al.). A path is said to be complete if the vehicle can successfully arrive at the goal
destination by following the path (assuming the environment does not change). Batch
planners work well with AGVs because ground environments are mostly static (for
example, terrain elevations do not change by the minute), and if there are only minor
changes, the path does not need to be re-planned from scratch because most of it remains
unaffected (Ferguson et al.).

Autonomous Sea Surface Vehicles (ASSV) do not typically implement batch path
algorithms because the sea environment is very dynamic; the path would often need to be
completely re-calculated, resulting in extensive computation time. Instead, ASSVs
usually implement a continuous path planner, which finds an optimal path to a horizon
point, well short of the goal waypoint. This plan is continuously updated with
modifications as the vehicle moves (Huntsberger et al., Chien et al., Larson et al.).

3

Naval Surface Warfare Center Carderock Division
Naval Research Enterprise Intern Program

DUKW-21 Autonomous Navigation

Autonomous Amphibious Vehicles (AuAV) also face a particularly difficult challenge:
the transition. That is, traveling through both environments while moving from sea to
land, and vice versa. This transition requires the vehicle to traverse the surf zone, which
is even more dynamic than open water, negating the use of a batch path planner.
Similarly, a continuous path planner which does not consider the entire environment
would also fail, for the same reason it is unsuitable for ground navigation: it only plans
for the short term, potentially allowing the AV to get stuck in a dead end. See Figure 4
for an illustration of this problem. Figure 4 illustrates the problem when using a
continuous planner for ground navigation; a terrain map is given where each cell has an
associated cost, or traversibility difficulty. The AGV seeks to find a path to its goal cell
by only considering a limited horizon. The pink arrow represents a path that the AGV
would take if it does not consider the entire course; a dead end.

Figure 4: Flaw of Continuous Process Implementation on AGV

Graph Model Concepts

Before any detailed discussion on path theory can begin in earnest, it is important to
outline the standard notation used to explain concepts in this largely mathematical field.
The following pages define a number of terms, and establish the notation that will be
used throughout this paper.

Terminology

A graph G is defined to be a set of nodes, denoted by S, and a set of directional edges,
denoted by . If ij is an element of , it is said that there is an edge from node si  S to
node sj  S, sj is a successor of si, and si is a predecessor of sj. Note: the existence of ij
does not imply the existence of ji. The graphs of concern for this application are those
whose edges have costs associated with them. The cost of edge ij is denoted by c(si, sj).
Note: the existence of ij and ji does not imply that c(si, sj) =c(sj, si). In this report, the
only graphs of concern are those where for every pair of nodes sp and sq that are elements
of S, if the edge pq exists, the cost of pq is greater than zero. That is,  si,sj  S, ij ≠
 c(si, sj) > 0.

4

Naval Surface Warfare Center Carderock Division
Naval Research Enterprise Intern Program

DUKW-21 Autonomous Navigation

Define the successor multi-valued function  on S, whose value for each s is the set of
successors S’  S of s. That is, s) = S’ :  s’  S’, s,s’ ≠  s’’  {x  S : x S’},
s,s’’ = . Let the inverse of   when applied to s,yield the set of predecessors of s.
When or   is applied to a node s, it is said that s is expanded.
A path p(s1, sn) from s1 to sn is an ordered set of nodes {s1,s2,…,si,si+1,…,sn} with each
si+1 a successor of si. The cost of a path is the sum of the cost of the edges in the path.
That is, c(p(s1, sn)) = c(s1,s2) + c(s2,s3) + …+ c(si,si+1) + … + c(sn-1,sn). If a path from
si to sj exists, sj is said to be accessible from si. The problem of finding an optimal path
from a starting node sstart to a goal node sgoal can be stated as such:
If sgoal is accessible from sstart, find the cheapest path p(sstart, sgoal). That is, given
sstart,sgoal  S, find argmin(c(p(sstart, sgoal))).

Finding an Optimal Path

A classical approach to finding the optimal path in a graph is to use Dijkstra’s algorithm
(Algorithm). Define the path cost function g : S  + to yield the cost of the cheapest
path from the start node s to the present node. That is, g(s) = min{c(p(s , s))}. g(s)
is also referred to as the g-value. Dijkstra’s algorithm initializes g-values for every node,
and then improves them with each iteration. To access the optimal path after the process
is complete, use .

start start

Algorithm 2

Algorithm 1: Dijkstra's Algorithm

Step 1 Assign the start node a g-value of zero and every other node a g-value of
infinity.

Step 2 Mark all nodes unvisited and set the initial node to the current node, s.
Step 3 Expand s and update the g-values for every successor node s’ that is unvisited.

That is, g(s’) = g(s) + c(s, s’).
Step 4 Mark s visited and set the unvisited node in the graph with the smallest g-value

as the current node s.
Step 5 Repeat steps 3 and 4 until s = sgoal.

Algorithm 2: Constructing Optimal Path

Step 1 Set the current node s’ to sgoal.
Step 2 Expand s’.
Step 3 Connect s’ to the predecessor node s with the smallest g-value, and set s’ to s.
Step 4 Repeat steps 2 and 3 until s’ = sstart.

Dijkstra’s algorithm always yields the optimal path from a start node to a goal node.
However, it is inefficient because many nodes are expanded, which makes for long
computation time. Consider a situation where information is known about the problem’s
environment such that even without expanding a node s, an approximate cost can be
determined for the optimal path from s to sgoal. This approximate cost is called the
heuristic, or h-value. The sum of the g-value and h-value is called the f-value. That is, f(s)
= g(s) + h(s). The f-value of a node can be thought of as the lower bound of the cost of
the path from sstart to sgoal that goes through s. Then, instead of visiting every node, the
only nodes that would need to be visited are ones that have the smallest f-value.

5

Naval Surface Warfare Center Carderock Division
Naval Research Enterprise Intern Program

DUKW-21 Autonomous Navigation

To illustrate an example where using a heuristic would greatly reduce the number of
nodes expanded in a path search, consider the problem of finding the fastest road route
from an initial city sstart to goal city sgoal. Using a graph to model the problem would be
appropriate, where edges represent streets and nodes represent intersections. The cost of
each edge would be the travel time of traversing it. Because it is impossible for a road to
be shorter than the perfectly straight line connecting a node s to sgoal, an appropriate h-
value would be the travel time of the straight-line path from a node s to sgoal, which is the
lower bound of the travel time between the two points. To see how this heuristic would
be useful, consider the following case:

Suppose the current node s is the start node sstart, and is expanded, and there are two
successors, s1 and s2, where g(s1) < g(s2). Using Dijkstra’s algorithm’s would always be
set to s1. Suppose that sgoal is directly north of sstart, there is a straight road connecting
them, s2 is an intersection on that road, and s1 is an intersection that is exactly east of
sstart, but is closer than s2 (see Figure 5).

Figure 5: Case where g(s1) < g(s2) but s2 is a

Node on the Optimal Path.

Figure 6: Case Where Change in Environment
Does Not Drastically Affect the Optimal Path

Assuming the road conditions are homogenous (traffic, speed limit, etc. is the same
everywhere), it can be seen that without taking the h-value into account, the non-optimal
node, s1 would be expanded next, but if f-values of unvisited nodes were compared
instead of g-values, s would be changed from sstart to s2, which would be the optimal
choice, and would thereby not waste time on an unnecessary node expansion. Algorithm
3 is a heuristic extension of Dijkstra’s algorithm known as A*.

6

Naval Surface Warfare Center Carderock Division
Naval Research Enterprise Intern Program

DUKW-21 Autonomous Navigation

Algorithm 3: A*

Step 1 Assign the start node an f-value of h(s)start and every other node an f-value of
infinity.

Step 2 Mark all nodes unvisited and set the initial node to the current node, s.
Step 3 Expand s and update the f-values for every successor node s’ that is unvisited.

That is, f(s’) = g(s) + c(s, s’) + h(s’).
Step 4 Mark s visited and set the unvisited node in the graph with the smallest f-value

as the current node s.
Step 5 Repeat steps 3 and 4 until s = sgoal.

In cases where the environment is not static, the optimal path needs to constantly be
modified. When most of the changes do not drastically affect the entire optimal path, the
path does not necessarily have to be reconstructed from scratch. For example, consider
the case in Figure 6 where initially, the optimal path from sstart to sgoal takes the road
modeled by the edge from s4 to sgoal. Suppose, however, that while the vehicle is still
very far from sgoal, there is an accident on the said road. To update the optimal path, a
simple detour would need to be made and instead of traveling straight to sgoal from s4, the
optimal path would travel from s4 to s5, and then to sgoal. But, the optimal path from sstart
to s4 would remain the same.

While an AV navigates, the most drastic changes in the environment are typically close
to it. This is because the global map that is provided via some agent has error, and the
perception of the local environment picked up by sensors on the AV give a much better
picture of the local environment. Therefore, path-replanning algorithms typically find an
optimal path starting from the goal and work towards the present location, so that local
changes do not affect most of the optimal path. In this case, the g-value refers to the cost
of the optimal path from a node s to sgoal and the h-value refers to the Euclidean distance
from sstart to s. Using A* to find an initial optimal path but starting with sgoal and working
towards sstart is called Backwards A*.

One dynamic re-planning extension of A* is called D* Lite, which introduces additional
terminology. When the cost of an edge changes, the g-value of the successor usually
changes, and the node whose g-value changes is said to be inconsistent. If c(s, s’) changes
and g(s’) decreases, s’ is said to be over-consistent. On the other hand, if c(s, s’) changes,
g(s’) increases and s’ is said to be under-consistent. Algorithm 4 shows a high level
description of D* Lite (note: this is a version not optimized for computation time; for an
optimized version see Koenig & Likhachev). To access the optimal path after D* Lite is
complete, use Algorithm 2 but instead of starting at sgoal, start at sstart and work towards
sgoal.

7

Naval Surface Warfare Center Carderock Division
Naval Research Enterprise Intern Program

DUKW-21 Autonomous Navigation

Algorithm 4: D* Lite

Step 1 Use Backwards A* to find an optimal path from sgoal to sstart.
Step 2 Update the g-value for every node s’ where c(s, s’) changed for a predecessor

node s by considering each predecessor node p (going towards sgoal from s’) and
finding the one that minimizes g(p) + c(p, s’), which equals the new g(s’) (note:
p might equal s).

Step 3 While the inconsistent node s with the smallest f-value is less than the f-value of
sstart:

 If s is under-consistent, repeat Step 2 for every predecessor of s
(towards sstart).

 If s is over-consistent, repeat Step 2 for s and every predecessor of s.

It should be noted that D* Lite does not necessarily derive an optimal path faster than A*.
This is because A* expands each node at most, once, while D* Lite can expand a node
twice: once as an under-consistent state and once as an over-consistent state. Thus, D*
Lite should only be used if the environment is mostly static, and only minor changes need
to be made to correct the optimal path.

Approach to Amphibious Navigation

The only way to develop, or identify a potential process for amphibious navigation is to
separate the problem field into its three components; sea, land and transition. By
investigating what options exist in planning paths in each, while considering the
requirements of interactivity, it may be possible to identify a hybrid algorithm, or set of
algorithms which can be used to provide full amphibious autonomy.
To this end, the problem is considered as separate tasks; having the start and end points
both at sea, both on land, and only then starting at sea and terminating on land (and vice
versa).

8

Naval Surface Warfare Center Carderock Division
Naval Research Enterprise Intern Program

DUKW-21 Autonomous Navigation

Sea Surface Navigation
An AuAV, like an ASSV, will be put through extensive trials to identify its operational
capacity – generally conducted on prototypes before the final design is built. The analysis
of this prototype data should be used to derive an estimated direction dependent speed
function that takes information from the vehicle’s sensor suite (such as roll angle, wind
velocity, and its own velocity) as inputs.

The direction dependent speed function V( : [0, 2]  + denotes the maximum
attainable speed for a given heading angle Let Pxy be defined as the set of all
continuous and rectifiable paths from the start point x to a target point y. Define the path
traversal time function t : P  +, where  p P , t(p) denotes the travel time required
to traverse the path p. The problem can now formally be defined:

xy

For a given speed function V( : [0, 2]  +, a starting point x  2, and a goal point
y  2, find a fastest path from x to y that lies in 2. That is, find p’ Pxy : t(p’) ≤ t(p) 
p  Pxy.

An AuAV must operate in shallow water and the surf zone, where predicting the
dynamics requires very sophisticated modeling techniques (Madsen et al.). Since
autonomous sea surface navigation requires continuous re-planning, as opposed to batch
planning, as discussed earlier, incorporating the models into a navigation algorithm
would be infeasible. To develop an intuitive, computationally feasible algorithm, the
problem can be simplified by treating the sea state in the ocean as time and space
homogeneous every time a direction dependent speed function is calculated. In other
words, whenever V(is calculated at the vehicles present location, it is assumed that
every point in the sea area of operation has the same direction-dependent speed function.

The homogenous simplification allows for the consideration of a Unit Linear Path
Attainable Region (ULPAR), or the set of all points that can be reached in a unit time
period from a starting point while following a straight line path. That is,  x  2, an
ULPAR L(x) := {y  2 : || y – x || ≤ V()}, where and || y – x || denote the angle
and length of a vector y – x, respectively. In the case where the ULPAR is convex, the
optimal path in P is merely the straight line connecting points x and y. However, in most
cases, the ULPAR will not be convex, so a theorem developed by Dolinskaya & Smith
(2008a) is applied (see). Some additional terminology is required:

y-x y-x

xy

Theorem 1

Define bd(L(x)) to be the border of L(x) and conv(L(x)) to be the convex hull of L(x). For
the problem of finding the fastest path from x to y, let k be the point of intersection of the
line lxy connecting points x and y, and the border of the ULPAR L(x), i.e., k := lxy ∩
bd(L(x)). Similarly, k’ := lxy ∩ bd(conv(L(x))). See Figure 7 and Figure 8 for a diagram
illustrating these definitions.

9

Naval Surface Warfare Center Carderock Division
Naval Research Enterprise Intern Program

DUKW-21 Autonomous Navigation

Figure 7: ULPAR Definitions Illustration

Figure 8: Case 1, k = k’

Theorem 1: Optimal Path between Two Points for Non-Convex ULPAR (Dolinskaya & Smith,
2008a)

If k = k’ , the fastest path from x to y is the straight line segment connecting them (see Figure 8).

If k ≠ k’ , the fastest path from x to y consists of two line segments: the straight line segment from
point x to point z = x + (x1 – x) and the second line segment from point z to point y, where

 and x1, x2  L(x) s.t.    [0,1] : k’ = x1 + (1 - )x2 (see Figure 9, and note that (y
– z)||(x2 – x)).

Figure 9: Case 2, k ≠ k’

Figure 10: Example of Case with No Feasible Path

10

Naval Surface Warfare Center Carderock Division
Naval Research Enterprise Intern Program

DUKW-21 Autonomous Navigation

The fastest path theorem stated above assumes that a feasible path from x to y exists. In
some situations, the sea state might be such that no feasible path exists with the
corresponding ULPAR (see Figure 10). In the event that DUKW-ling has no feasible path
from its present location to its goal, it must go backwards until a feasible path exists. The
planner’s first step will always be to see if a feasible path exists by using the approach
laid out in the following:

If the domain of V() is extended to [-, 3], lower and upper heading angle bounds can
be defined. If V(y-x) = 0, define the lower heading angle bound L to be the greatest
angle going clockwise on V starting at y-x where the maximum attainable speed at every
angle between this and y-x is zero. That is, L := inf{V() = 0,   [y-x]}.
Similarly, the upper heading angle bound U := sup{V() = 0,   [y-x, ]}.
See Figure 11 for an illustration of the definitions. To determine if a feasible path exists
from x to y, Theorem 2 is used.

Theorem 2: Path Feasibility (Dolinskaya & Smith, 2008a)

A feasible path from x to y does not exit if and only if V(y-x) = 0 and ||U|| + ||L|| ≥ .

Figure 11: Illustration of Defined Heading Bounds

Now consider the problem of finding the fastest path from point s to point t in a plane
with polygonal domain, 2 \ , where is the set of obstacles, and L(s) is convex. Let

(i,j) be the travel time from point i to point j for a direction dependent speed function
V. finds an obstacle avoiding fastest path when the ULPAR is convex
(modified from Dolinskaya & Smith, 2008b). Backwards A* was chosen as the
algorithm for finding the optimal path in the visibility graph instead of D* Lite because

 
V

Algorithm 5

11

Naval Surface Warfare Center Carderock Division
Naval Research Enterprise Intern Program

DUKW-21 Autonomous Navigation

the cost of almost every edge in the graph will change as V changes, which would make
D* Lite slower due to the double node expansion mentioned earlier.

Algorithm 5: Obstacle-Avoiding Fastest Path for Convex ULPAR

Step 1 Construct a visibility graph G as follows (see Figure 12 for an example):
 The set of nodes, S, is composed of all the vertices of the obstacles in ,

as well as start point s and target t.

 The setof edges,  consists of all the straight-line edges
interconnecting these vertices such that they do not intersect any of the
obstacles in .

 For an edge with parent node i and successor node j, let the cost of the
edge, c(i,j) = V(i,j).

Step 2 Apply Backwards A* Algorithm to find an optimal path in G from node s to
node t. For the h-value, use the travel time of traveling the Euclidean distance
from s to the present location (this the lower bound of the fastest route). The
resulting path is an obstacle-avoiding fastest path. See Figure 13 for an example
of an obstacle avoiding fastest path for the visibility graph in Figure 12.

Figure 12: Construction of a Visibility Graph (Dolinskaya & Smith, 2008b)

12

Naval Surface Warfare Center Carderock Division
Naval Research Enterprise Intern Program

DUKW-21 Autonomous Navigation

Figure 13: Optimal Path for Visibility Graph in Figure 12 when L(s) is Convex (Dolinskaya & Smith,

2008b)

To extend this approach to the case when L(s) is not convex, apply Algorithm 5 using the
convex hull of V, denoted as V ’. Then use Theorem 1 to find an optimal path from the
start point to the end point of each edge in the path obtained from Algorithm 5. Denote
this transformation with the function  :   x, where (xy) = {xz, zy}, where
V‘(x, y) = V(x, z) + V(z, y) (for a proof, see Dolinskaya & Smith, 2008a).

However, consider the case where the optimal path corresponding to an edge is blocked
by an obstacle. To deal with this problem, divide the edge into subsections such that the
optimal path corresponding to each subsection is not blocked by an obstacle. That is, 
xy  , (xy) ∩  ≠   n  s.t. V‘(x, p1) + V‘(p1, p2) + … + V‘(pn, y) = V‘(x,
y) (x,p1) ∩  = . The optimal path is then the sum of these zigzag paths. See
Figure 14 for an illustration of such a path.

Figure 14: Optimal Path from x to y (Dolinskaya & Smith, 2008b)

13

Naval Surface Warfare Center Carderock Division
Naval Research Enterprise Intern Program

DUKW-21 Autonomous Navigation

Using the mentioned theorems and processes, Dolinskaya & Smith derive an algorithm
which finds an optimal path from s to t such as in Figure 15. But, since the optimal path
still intersects the nodes of the path yielded by Algorithm 5, to save computing time, it
will only be of interest to derive the optimal path from the present location to the nearest
node in the path from Algorithm 5. If the travel time of the path to the first node is less
than the time it takes the computer to find a new path, the path should be calculated
through the second node. Now Algorithm is introduced, which finds the heading for the
optimal path from a start point in water to a goal point in water.

Algorithm 6: Heading for Optimal Path

Step 1 Find V’(for   [0, 2] such that LV’ = conv(LV).
Step 2 Use Algorithm 5 to find an optimal path pV’ corresponding to V’ .
Step 3 Let {k0, k1, k2, …, kn} be an ordered set of vertices pV’ traverses where k0 = s

and kn = t. For the pair k0, k1, find (k0,k1). If (k0,k1) ∩  ≠ , divide k0,k1
into m subsections such that V‘(k0, p1) + V‘(p1, p2) + … + V‘(pm, k1) = V‘(k0,
k1) and (k0,p1) ∩  = . Use this approach to find the zigzag optimal path and
make this the new (k0,k1).

Step 4 Navigate along (k0,k1). If the optimal V(k0, k1) is less than the time it takes to
plan a new path, repeat step 3 to find (k1,k2) and add that path to (k0,k1).

Step 5 In parallel, process the following, and navigate on the path that is derived first:
 Repeat Steps 3-4 to find (k0,k1) and/or (k0,k2).

 If Step 2 is not being processed, start processing Step 2.

Figure 15: Optimal Path for Visibility Graph in Figure 12 when L(s) is Non-Convex (Dolinskaya &

Smith, 2008b)

14

Naval Surface Warfare Center Carderock Division
Naval Research Enterprise Intern Program

DUKW-21 Autonomous Navigation

ased representation of a map
ontaining information about the terrain, as well as enemy locations. Each cell in the grid

the paths produced are restricted to headings of /4 increments. See Figure 16 and Figure
17 for an illustration of this problem reproduced from Ferguson & Stentz, 2005. In Figure
17, shaded cells indicate obstacles, the black line is the angle-limited path, and the dashed
blue line is the optimal path.

Ground Navigation
An AuAV, like typical military AGVs, will have a grid-b
c
will have an associated cost corresponding to its traversibility difficulty (recall Figure 4).
For ground navigation, the task is to plan the path of least net cost from the AV’s present
location in the grid to a desired goal location in the grid.

A common method of approximating the grid is with a graph, where nodes represent grid
cell centers and edges connect nodes corresponding to adjacent grid cells. This simplifies
the problem of path planning to finding the optimal path of a graph which was discussed
earlier (see Ferguson et al. for a survey). A significant limitation of this approach is that

Fig
Re

ure 16: A Grid in which Nodes
side at the Center of each Cell
(Ferguson & Stentz, 2005)

Figure 17: Comparison of Paths (Ferguson & Stentz, 2005)

A state-of-the-art path planner and re-planner, Field D* (Ferguson & Stentz, 2005) is
introduced in the follo

wing discussion, which assigns nodes to represent cell corners
instead of its center (see Figure 18). Field D* has been successfully implemented on
many AGVs, including Mars Exploration Rovers (Carsten et al.), and it is the algorithm
that an AuAV should use for ground navigation. Additional terminology is required to
understand Field D*.

15

Naval Surface Warfare Center Carderock Division
Naval Research Enterprise Intern Program

DUKW-21 Autonomous Navigation

Figure 18: A Grid in which Nodes Reside at Cell Corners (Ferguson & Stentz, 2005)

Terminology

A cell  is an integer point that contains a positive traversal cost c, and a set of four
corner nodes, denoted by Sc. That is,  := { 2, +, {Sc}}. A set of cells will be referred
to as a grid. To formally state the problem of finding an optimal ground path:
Given a grid and two nodes sstart and sgoal in the grid, find the path within the grid from
sstart to sgoal with minimum cost.

Define the node neighbor pair finding function  : S  {(S, S)} that would return a set of
node neighbor pairs (NNP). For example, in Figure 18, (s) would return the set
{(s1,s2),(s2,s3),…,(s7,s8),(s8,s1)}, where each (si, sj) is a NNP.

Calculating Path Cost

With algorithms where nodes correspond to grid cell centers, the cost of traveling from
one node to the successor node in a neighboring cell is the cell cost corresponding to the
successor node. This allows for the straightforward g-value from D*Lite and Backwards
A*: g(s) = min{c(s, s’) + g(s’)  s’  (s)}.

With Field D*, calculating the traversal cost from one node to another is less intuitive
which makes finding g-value more difficult. Field D* uses linear interpolation to arrive at
the following path cost function for g(sy), where sy is a point on the cell edge with
endpoints s1 and s2 (see Figure 19): g(sy) = yg(s2) + (1 – y)g(s1), where y is the distance
from s1 to sy, assuming unit cells. To reiterate, g(si) is the cost of the cheapest path from
si to sgoal. Staying with the example in Figure 19, to find g(s), the cost of traveling from s
to sy must be added to g(sy).

16

Naval Surface Warfare Center Carderock Division
Naval Research Enterprise Intern Program

DUKW-21 Autonomous Navigation

Figure 19: Illustration of Path Cost Function
Figure 20: Optimal Path from s to sy if < 0

The problem of finding the cost of traveling from s to sy is generalized to determining the
cheapest cost for a path from s to any point on the line segment l1,2 connecting the points
at s1 and s2. The path cost is a function of two cell weights, as well as the distance in the
x and y direction. Consider the example path in Figure 19. The path cost

22
2,1)1(),(yxabxlsc  , where a and b are weights of their corresponding cells.

It has been shown that there are only three possible optimal path forms from s to sy (see
Figure 20, Figure 21, Figure 22) (Ferguson & Stentz, 2005). Let  be the difference in
node g-values. That is, s1,s2)= g(s1) – g(s2). Algorithm is the process of calculating the
path cost for a node s going through a line segment l1,2. Calculating the path cost requires
three node parameters. c(s, s1, s2) yields the cost of the path from s to the cheapest point
on l1,2 where s2 is diagonal to s, a is the traversal cost of the cell with corners s, s1, s2,
and b is the traversal cost of the cell with corners s, s1, but not s2.

Algorithm 6: Calculating c(s, s1, s2)

Step 1 Check if a and b are both infinity. a b = ∞  g(s) = ∞.
Step 2 Find = g(s1) – g(s2). Depending on the value of , g(s) will have one of the

following values:
 If < 0, then the optimal path from s through l1,2 travels straight

through s1 (Figure 20), and has a path cost g(s) = min(a, b) + g(s1).

 If 0 <  ≤ b, then the optimal path travels straight through a point on
l1,2 not s1 or s2 (Figure 21), and has a path cost

)()1(1)(2
2 sgyysg   , where 










 1,min

22 



a
y .

 If 0 <  ≤ b, then the optimal path travels some of the bottom edge and
then straight through s2 (Figure 22), and has a path cost

17

Naval Surface Warfare Center Carderock Division
Naval Research Enterprise Intern Program

DUKW-21 Autonomous Navigation

)()1(1)(2
2 sgbxxasg  , where











 1,min1

22 ba

b
x .

Figure 21: Optimal Path from s to sy if  <  ≤ b

Figure 22: Optimal Path from s to sy if b < 

Deriving the Path

Field D* works similarly to D* Lite, but since it is not a graph path planner, there are
some differences. First, in deriving the initial path, Backwards A* cannot be used so it is
extended to work in the cell node model used by Field D* (see Algorithm 7). Second, the
heuristic must be modified to take into account that a point on a path can be changed to
any point along that cell side. Thus, the h-value of a node s is the minimum Euclidean
distance from sstart to any point on the side of the cell containing s. To trace the optimal
path, use Algorithm , which is an extended version of backwards Algorithm 2 to the grid
problem domain. Algorithm is a high level description of Field D* (note: this is an un-
optimized version; for an optimized version see Ferguson & Stentz, 2005).

Algorithm 7: Backwards A* Extended to Grid Problem Domain

Step 1 Assign the goal node an f-value of h(s)goal and every other node an f-value of
infinity.

Step 2 Mark all nodes unvisited and set the initial node to the current node, s.
Step 3 Expand s and update the f-values for every successor node s’ that is unvisited.

That is, f(s’) = g(s) + c(s, s’,s’’) + h(s’) (use Algorithm to find c(s, s’,s’’)).
Step 4 Mark s visited and set the unvisited node in the graph with the smallest f-value

as the current node s.
Step 5 Repeat steps 3 and 4 until s = sgoal.

18

Naval Surface Warfare Center Carderock Division
Naval Research Enterprise Intern Program

DUKW-21 Autonomous Navigation

Algorithm 8: Constructing Optimal Path in a Grid

Step 1 Set the current node s to sstart.
Step 2 Expand s.
Step 3 Connect s to the point which minimizes g(s) + c(s,s’,s’’) for all NNP (s’,s’’). Set

s to s’.
Step 4 Repeat steps 2 and 3 until s = sstart.

Algorithm 9: Field D*

Step 1 Use Backwards A* to find an optimal path from sgoal to sstart.
Step 2 Update the g-value for every node s’ where c(s, s’,s’’) changed for a node s by

considering each node p (going towards sgoal from s’) and finding the one that
minimizes g(p) + c(p, s’,s’’), which equals the new g(s’) (note: p might equal s).

Step 3 While the inconsistent node s with the smallest f-value is less than the f-value of
sstart:

 If s is under-consistent, repeat Step 2 for every s’ (towards sstart).

 If s is over-consistent, repeat Step 2 for s and every s’.

Transition
While the ground-to-ground path planning algorithm is a standard AGV algorithm, and
the sea-to-sea algorithm is derived from sea path optimization theorems, there has been
little to no research on planning paths for the transition from sea to ground and vice
versa.

The major challenge in transitioning is identifying the best beaching point. Recall that
finding an optimal sea path requires finding a simplified path from the present location to
a target point. Consider the case illustrated in Figure 23, where the AuAV must decide
which point on shore to beach. The left path at first may appear to be optimal because it
is in the heading angle of least resistance (as can be seen in the ULPAR), and the
beaching point has the lowest traversibility cost. However, the path would require the
vehicle to travel a considerable distance in navigating around the wall of obstacles once it
has beached. If it took the path on the right, it would incur a greater cost at first, but
would have an optimal path to travel to the final target from the beaching point. The
proposed algorithm solves this problem differently for each type of transition (sea-to-
ground and ground-to-sea).

19

Naval Surface Warfare Center Carderock Division
Naval Research Enterprise Intern Program

DUKW-21 Autonomous Navigation

Figure 23: Illustration of Difficulty in Identifying Beaching Point

Sea-Surface to Ground

The first approach considered for sea-surface to ground navigation is to find an optimal
path that considers both sea and land conditions. Since the optimal sea path is based on a
visibility graph with weighted edges, an intuitive way of incorporating information from
the ground is to integrate it with a ground path planner that uses a graph model of the
grid, such as D* Lite. Algorithm is a possible algorithm that integrates the two graph
models.

Algorithm 10: Optimized Sea-Surface to Ground Path Plan

Step 1 Construct a graph representation of the grid model of the ground using cell
centers as nodes and traversibility cost as edge cost.

Step 2 Use Algorithm 5 to determine the optimal travel time from the vehicle’s present
location to each node on the shore. Construct an edge from the vehicle’s
location to each node on the shore where the edge cost is a function of the
optimal travel time to that node.

Step 3 Use D* Lite (Algorithm 4) to find the optimal path from the present location to
the goal point on ground.

Step 4 Use Algorithm to find the heading of the optimal path from the present location
to the point on shore that is on the optimal path found in Step 3.

Step 5 While the vehicle is in the water and surf zone, repeat steps 2-4.
Step 6 When the vehicle is firmly on ground, use Field D* (Algorithm) to find the

optimal path to the goal.

Algorithm would come close to finding an optimal path that takes into account both sea
and ground conditions, however it would be computationally exhaustive because of Step
2, where separate visibility graphs are constructed for each shore point that is used as a
terminating waypoint. To derive a truly optimal path, the ground would need to be
represented by a high resolution grid, which would increase the amount of graphs that
would need to be constructed and then searched with D* Lite. An option would be to

20

Naval Surface Warfare Center Carderock Division
Naval Research Enterprise Intern Program

DUKW-21 Autonomous Navigation

create a low resolution grid approximation of the ground, which would result in less
graphs being constructed, but then the path would not be very optimal and would still
take more time than if only a single graph were constructed.

Algorithm 11 shows a less optimal, though much more computationally efficient
approach to finding an effective path from a start point at sea to a goal point inland. It
ignores ground traversibility difficulty when c < ∞ while the vehicle is still in water (see
Figure 24). This is done because it is believed that since surf zone dynamics are so
chaotic, any extra time it would take to optimize an amphibious path that takes into
account ground conditions would be better spent coming up with a new plan that would
adjust the vehicles heading to better travel in a new sea state. Furthermore, with
Algorithm 11, when the vehicle beaches, a feasible path will exist to the goal waypoint,
and Field D* would optimize the remainder of the path.

Algorithm 11: Computationally Feasible Sea-Surface to Ground Path Plan

Step 1 Treat the grid model of the ground as water where neighboring cells with
infinite traversibility costs are treated as an obstacle (see Figure 24).

Step 2 Use Algorithm to find the heading of the optimal path from the present location
to the goal.

Step 3 Repeat Step 2 while the vehicle is in water.
Step 4 When the vehicle is firmly on ground, use Field D* to find the optimal path to

the goal.

Figure 24: Illustration of Step 1 in Algorithm 11

Ground to Sea-Surface

Transitioning from ground to the sea poses less of a problem than the other way around
because once the vehicle is in water, Algorithm can be used to reach the goal waypoint.
Since the sea conditions change so rapidly, they should not be taken into account when

21

Naval Surface Warfare Center Carderock Division
Naval Research Enterprise Intern Program

DUKW-21 Autonomous Navigation

deriving the optimal path from ground to sea. The geometric configuration of the
obstacles, however, should be taken into account which leads to Algorithm .

Algorithm 12: Computationally Feasible Ground to Sea-Surface Path Plan

Step 1 Merge a grid representation of the sea, where obstacles represent neighboring
cells with traversal costs of infinity and all other cells have a unit traversal cost,
with the grid representation of land (see Figure 25).

Step 2 Use Field D* to find the optimal path from the present location to the goal
location at sea.

Step 3 While the vehicle is on land, repeat Step 2.
Step 4 When the vehicle is in water, use Algorithm to find the optimal heading to

reach the goal.

Figure 25: Illustration of Step 1 in Algorithm

22

Naval Surface Warfare Center Carderock Division
Naval Research Enterprise Intern Program

DUKW-21 Autonomous Navigation

Conclusion
Although AuAVs present a significant challenge in devising an optimized path-planning
procedure, a number of options have been investigated and discussed and a potential
algorithm for autonomous navigation has been identified and outlined:

 Existing theorems and algorithms for optimal sea paths were used to develop an
original algorithm for continuous path planning for sea-to-sea navigation
(Algorithm). The algorithm uses a simplified global path to derive an optimal
heading the vehicle should take which has been shown to coincide with the
heading of the actual optimal path (Dolinskaya & Smith, 2008b).

 An existing algorithm for autonomous ground navigation, Field D*, that is
implemented on Mars Exploration Rovers was investigated and selected as
feasible for this project (Algorithm).

 An original algorithm was proposed for the separate transition cases: sea-to-
ground (Algorithm 11), and ground-to-sea (Algorithm). For sea-to-ground, the
land area of operation is to be treated as sea, where cells with infinite traversal
costs are treated as obstacles, until the vehicle beaches, at which point ground
navigation (Algorithm) would be used to travel to the goal point. For ground-to-
sea, the water area of operation is to be treated as ground, where cells either have
costs of infinity (for obstacles), or one (lowest difficulty if there are no obstacles),
until the vehicle enters the sea, at which point sea navigation (Algorithm) would
be used to travel to the goal point.

Functional Requirements for Implementation

The proposed algorithms were developed as part of the design of an autonomous control
system for DUKW-21. In order to successfully implement the navigation algorithms on
DUKW-21 (or its current prototype – DUKW-ling), the assumed capabilities outlined
below must also be developed, making them effective information requirements of the
design.

 The AuAV will have access to a grid model of the global environment where each
cell has an associated traversibility cost.

 The AuAV will have interoperability with other systems involved in the mission,
which can provide updated information to the grid.

 There will be a means of creating a local map in real-time that can be efficiently
integrated with the global map to create one grid.

 The amphibious vehicle will be able to use data it collects from onboard sensors
to, in real-time, derive an approximate direction-dependent speed function that
maps each heading angle to a maximum-attainable speed.

Providing these are met (with appropriate complexity depending on the application
platform), the algorithm could be successfully implemented in either system.

23

Naval Surface Warfare Center Carderock Division
Naval Research Enterprise Intern Program

DUKW-21 Autonomous Navigation

Recommendations for Future Research
While the proposed algorithm finds an amphibious path that is feasible given
environmental conditions, it does not factor in all of the vehicle operability constraints. In
order to improve the accuracy of out path finding model, future development of this
algorithm should consider turning constraints of the vehicle.

One ongoing research effort involves optimizing paths constrained by the sharpest
feasible turns (Dolinskaya, 2009). However, this research does not address the presence
of obstacles in the vessel domain. Alternatively, one can integrate a penalty, as a function
of turn angle, which a vessel accrues every time it has to make a turn. This cost would be
integrated into the ULPAR for sea navigation or the local cell costs for ground
navigation. This way, the algorithm, for the most part, does not change; instead, the
problem space is modified (which would change the heuristic used). Optimal motion of
rotating non-circular robots is an ongoing field of research; a place to get started are the
sections on optimal motion of non-point robots and multiple criteria optimal paths in
Mitchell’s survey (2000).

Additional work that must be completed in order to progress the development of an
autonomous DUKW-21 include:

 Tests should be carried out on the remote-controlled DUKW-ling to better
understand its dynamics in different sea states, as well as determine various
constraints, such as maximum turning radius and the maximum slope gradient it is
able to traverse.

 Research on Simultaneous Localization and Mapping (SLAM) algorithms to
determine which ones are appropriate for DUKW-21’s specifications.

 A hardware survey must be done to decide which sensors would be able to
provide the necessary information for DUKW-21 to derive a direction-dependent
speed function, as well as model the local environment to guarantee that the
SLAM algorithm will be successful. The hardware must also be able to facilitate
interoperability with other systems that will eventually be a part of DUKW-21’s
missions.

24

Naval Surface Warfare Center Carderock Division
Naval Research Enterprise Intern Program

DUKW-21 Autonomous Navigation

Bibliography

Carsten, Joseph. et al. (2006). “Global Planning on the Mars Exploration Rovers:

Software Integration and Surface Testing,” Jet
Propulsion Lab Technical Report.

Chien, Steve. et al. (2000). "Using Iterative Repair to Improve the
Responsiveness of Planning and Scheduling,"
Proceedings of the Fifth International Conference
on Artificial Intelligence Planning and Scheduling.

Critchell, Lee. (2009). “DUKW-21 1:7 Scale Model Demonstrator
‘DUKW-ling’ Design Report,” Center for
Innovation in Ship Design, Naval Surface Warfare
Center, Carderock Division technical report.

Dijkstra, Edsger. (1959) “A note on two problems in connexion with
graphs,” Numerische Mathematik 1:269-271.

Dolinskaya, Irina. (2009) “Optimal Path Finding in Direction, Location and
Time Dependent Environments,” Ph.D. thesis (in
preparation), University of Michigan.

Dolinskaya, Irina. Smith, Robert. (2008a). “Fastest Path Planning for Direction

Dependent Speed Functions,” University
of Michigan technical report.

Dolinskaya, Irina. Smith, Robert. (2008b). “Obstacle-Avoiding Fastest Paths in
Anisotropic Media,” University of
Michigan technical report.

Ferguson, Dave. et al. (2005). “A Guide to Heuristic-based Path Planning,” In
Proceedings of the Workshop on Planning under
Uncertainty for Autonomous Systems at The
International Conference on Automated Planning
and Scheduling (ICAPS).

Ferguson, Dave. Stentz, Anthony. (2005). “The Field D* Algorithm for Improved
Path Planning and Replanning in
Uniform and Non-Uniform Cost
Environments,” Carnegie Mellon
University Technical Report

Ferguson, Dave. Stentz, Anthony. (2006a). “Using interpoloation to improve path
planning: The Field D* algorithm,”
Journal of Field Robotics, Vol. 23.

Ferguson, Dave. Stentz, Anthony. (2006b). “Multi-resolution Field D*,”
Proceedings of the International
conference on Intelligent Autonomous
Systems.

Gonzalez, Franklin. et al. (2007). “DUKW 21 – Amphibious cargo transfer from ship to
shore,” Center for Innovation in Ship Design, Naval

25

Naval Surface Warfare Center Carderock Division
Naval Research Enterprise Intern Program

DUKW-21 Autonomous Navigation

26

Surface Warfare Center, Carderock Division
technical report.

Graham, R.L. (1972). “An efficient algorithm for determining the convex
hull of a finite planar set,” Information Processing
Letters, vol. 1.

Hart, Peter E. et al. (1968). “A Formal Basis for the Heuristic Determination of
Minimum Cost Paths,” IEEE Transactions on
Systems Science and Cybernetics.

Huntsberger, Terry. et al. (2006). “Intelligent Autonomy for Unmanned Sea Surface
and Underwater Vehicles,” AUVSI Unmanned
Science Newsletter.

Koenig, Sven. Likhachev, Maxim. “D* Lite,” In Proceedings of the National
Conference on Artificial Intelligence (AAAI), 2002.

Madsen, P.A. et al. (1997). “Surf zone dynamics simulated by a Boussinesq
type model. Part I. Model description and cross-
shore motion of regular waves,” Coastal
Engineering Vol. 32.

Mitchell, Joseph S. (2000). “Geometric Shortest Paths and Network
Optimization,” Handbook of Computational
Geometry Chapter 15.

Pell, Barney. et al. (1997). “An Autonomous Spacecraft Agent Prototype,”
Agents Conference Proceedings.

Rabideau, Gregg. et al. (1999). “Iterative Repair Planning for Spacecraft
Operations Using the Aspen System,” Jet
Propulsion Lab Technical Report.

	List of Figures
	Introduction
	DUKW-21 Automation

	Overview of Autonomous Navigation
	Path Planning Philosophies
	Graph Model Concepts
	Terminology
	Finding an Optimal Path
	Approach to Amphibious Navigation

	Sea Surface Navigation
	Ground Navigation
	Terminology
	Calculating Path Cost
	Deriving the Path

	Transition
	Sea-Surface to Ground
	Ground to Sea-Surface

	Conclusion
	Functional Requirements for Implementation

	Recommendations for Future Research
	Bibliography

